982 research outputs found

    Health services research in the public healthcare system in Hong Kong: An analysis of over 1 million antihypertensive prescriptions between 2004-2007 as an example of the potential and pitfalls of using routinely collected electronic patient data

    Get PDF
    <b>Objectives</b> Increasing use is being made of routinely collected electronic patient data in health services research. The aim of the present study was to evaluate the potential usefulness of a comprehensive database used routinely in the public healthcare system in Hong Kong, using antihypertensive drug prescriptions in primary care as an example.<p></p> <b>Methods</b> Data on antihypertensive drug prescriptions were retrieved from the electronic Clinical Management System (e-CMS) of all primary care clinics run by the Health Authority (HA) in the New Territory East (NTE) cluster of Hong Kong between January 2004 and June 2007. Information was also retrieved on patients’ demographic and socioeconomic characteristics, visit type (new or follow-up), and relevant diseases (International Classification of Primary Care, ICPC codes). <p></p> <b>Results</b> 1,096,282 visit episodes were accessed, representing 93,450 patients. Patients’ demographic and socio-economic details were recorded in all cases. Prescription details for anti-hypertensive drugs were missing in only 18 patients (0.02%). However, ICPC-code was missing for 36,409 patients (39%). Significant independent predictors of whether disease codes were applied included patient age > 70 years (OR 2.18), female gender (OR 1.20), district of residence (range of ORs in more rural districts; 0.32-0.41), type of clinic (OR in Family Medicine Specialist Clinics; 1.45) and type of visit (OR follow-up visit; 2.39). <p></p> In the 57,041 patients with an ICPC-code, uncomplicated hypertension (ICPC K86) was recorded in 45,859 patients (82.1%). The characteristics of these patients were very similar to those of the non-coded group, suggesting that most non-coded patients on antihypertensive drugs are likely to have uncomplicated hypertension. <p></p> <b>Conclusion</b> The e-CMS database of the HA in Hong Kong varies in quality in terms of recorded information. Potential future health services research using demographic and prescription information is highly feasible but for disease-specific research dependant on ICPC codes some caution is warranted. In the case of uncomplicated hypertension, future research on pharmaco-epidemiology (such as prescription patterns) and clinical issues (such as side-effects of medications on metabolic parameters) seems feasible given the large size of the data set and the comparability of coded and non-coded patients

    The Patient Enablement Instrument-French version in a family practice setting: a reliability study

    Get PDF
    Background: Patient enablement can be defined as the extent to which a patient is capable of understanding and coping with his or her health issues. This concept is linked to a number of health outcomes such as self-management of chronic diseases and quality of life. The Patient Enablement Instrument (PEI) was designed to measure this concept after a medical consultation. The instrument, in its original form and its translations into several languages, has proven to be reliable and valid. The purpose of this study was to evaluate the reliability of the French version of the PEI (PEI-Fv) in a family practice setting. Methods: One hundred and ten participants were recruited in a family medicine clinic in the Saguenay region of Quebec (Canada). The PEI-Fv was completed twice, immediately after consultation with a physician (T1) and 2 weeks after the consultation (T2). The internal consistency of the tool was assessed with Cronbach's α and test-retest reliability by intraclass correlation coefficient. Results: The mean score for the PEI-Fv was 5.06 ± 3.97 (95% confidence interval [CI]: 4.30-5.81) at T1 and 4.63 ± 3.90 (95% CI: 3.82-5.44) at T2. Cronbach's α was high at T1 (α1 = 0.93; 95% CI: 0.91-0.95) and T2 (α2 = 0.93; 95% CI: 0.91-0.95). The intraclass correlation coefficient was 0.62 (95% CI: 0.48-0.74), indicating a moderate test-retest reliability. Conclusions: The internal consistency of the PEI-Fv is excellent. Test-retest reliability was moderate to good. Test-retest reliability should be examined in further studies at a less than 2-week interval to reduce maturation bias. This instrument can be used to measure enablement after consultation in a French-speaking family practice setting

    Protein-coding and non-coding gene expression analysis in differentiating human keratinocytes using a three-dimensional epidermal equivalent

    Get PDF
    The epidermal compartment is complex and organized into several strata composed of keratinocytes (KCs), including basal, spinous, granular, and corniWed layers. The continuous process of self-renewal and barrier formation is dependent on a homeostatic balance achieved amongst KCs involving proliferation, diVerentiation, and cell death. To determine genes responsible for initiating and maintaining a corniWed epidermis, organotypic cultures comprised entirely of stratiWed KCs creating epidermal equivalents (EE) were raised from a submerged state to an air/liquid (A/L) interface. Compared to the array proWle of submerged cultures containing KCs predominantly in a proliferative (relatively undiVerentiated) state, EEs raised to an A/L interface displayed a remarkably consistent and distinct proWle of mRNAs. Cultures lifted to an A/L interface triggered the induction of gene groups that regulate proliferation, diVerentiation, and cell death. Next, diVerentially expressed microRNAs (miRNAs) and long noncoding (lncRNA) RNAs were identiWed in EEs. Several diVerentially expressed miRNAs were validated by qRT-PCR and Northern blots. miRNAs 203, 205 and Let-7b were up-regulated at early time points (6, 18 and 24 h) but downregulated by 120 h. To study the lncRNA regulation in EEs, we proWled lncRNA expression by microarray and validated the results by qRT-PCR. Although the diVerential expression of several lncRNAs is suggestive of a role in epidermal diVerentiation, their biological functions remain to be elucidated. The current studies lay the foundation for relevant model systems to address such fundamentally important biological aspects of epidermal structure and function in normal and diseased human skin

    Identification and comparative analysis of ncRNAs in human, mouse and zebrafish indicate a conserved role in regulation of genes expressed in brain

    Get PDF
    ncRNAs(non-coding RNAs), in particular long ncRNAs, represent a significant proportion of the vertebrate transcriptome and probably regulate many biological processes. We used publically available ESTs(Expressed Sequence Tags) from human, mouse and zebrafish and a previously published analysis pipeline to annotate and analyze the vertebrate nonprotein-coding transcriptome. Comparative analysis confirmed some previously described features of intergenic ncRNAs, such as a positionally biased distribution with respect to regulatory or development related protein-coding genes, and weak but clear sequence conservation across species. Significantly, comparative analysis of developmental and regulatory genes proximate to long ncRNAs indicated that the only conserved relationship of these genes to neighbor long ncRNAs was with respect to genes expressed in human brain, suggesting a conserved, ncRNA cis-regulatory network in vertebrate nervous system development. Most of the relationships between long ncRNAs and proximate coding genes were not conserved, providing evidence for the rapid evolution of species-specific gene associated long ncRNAs. We have reconstructed and annotated over 130,000 long ncRNAs in these three species, providing a significantly expanded number of candidates for functional testing by the research community.Zhipeng Qu and David L. Adelso

    Comparative Analysis of Human Protein-Coding and Noncoding RNAs between Brain and 10 Mixed Cell Lines by RNA-Seq

    Get PDF
    In their expression process, different genes can generate diverse functional products, including various protein-coding or noncoding RNAs. Here, we investigated the protein-coding capacities and the expression levels of their isoforms for human known genes, the conservation and disease association of long noncoding RNAs (ncRNAs) with two transcriptome sequencing datasets from human brain tissues and 10 mixed cell lines. Comparative analysis revealed that about two-thirds of the genes expressed between brain and cell lines are the same, but less than one-third of their isoforms are identical. Besides those genes specially expressed in brain and cell lines, about 66% of genes expressed in common encoded different isoforms. Moreover, most genes dominantly expressed one isoform and some genes only generated protein-coding (or noncoding) RNAs in one sample but not in another. We found 282 human genes could encode both protein-coding and noncoding RNAs through alternative splicing in the two samples. We also identified more than 1,000 long ncRNAs, and most of those long ncRNAs contain conserved elements across either 46 vertebrates or 33 placental mammals or 10 primates. Further analysis showed that some long ncRNAs differentially expressed in human breast cancer or lung cancer, several of those differentially expressed long ncRNAs were validated by RT-PCR. In addition, those validated differentially expressed long ncRNAs were found significantly correlated with certain breast cancer or lung cancer related genes, indicating the important biological relevance between long ncRNAs and human cancers. Our findings reveal that the differences of gene expression profile between samples mainly result from the expressed gene isoforms, and highlight the importance of studying genes at the isoform level for completely illustrating the intricate transcriptome

    Examples of sequence conservation analyses capture a subset of mouse long non-coding RNAs sharing homology with fish conserved genomic elements

    Get PDF
    Background: Long non-coding RNAs (lncRNA) are a major class of non-coding RNAs. They are involved in diverse intra-cellular mechanisms like molecular scaffolding, splicing and DNA methylation. Through these mechanisms they are reported to play a role in cellular differentiation and development. They show an enriched expression in the brain where they are implicated in maintaining cellular identity, homeostasis, stress responses and plasticity. Low sequence conservation and lack of functional annotations make it difficult to identify homologs of mammalian lncRNAs in other vertebrates. A computational evaluation of the lncRNAs through systematic conservation analyses of both sequences as well as their genomic architecture is required.Results: Our results show that a subset of mouse candidate lncRNAs could be distinguished from random sequences based on their alignment with zebrafish phastCons elements. Using ROC analyses we were able to define a measure to select significantly conserved lncRNAs. Indeed, starting from ~2,800 mouse lncRNAs we could predict that between 4 and 11% present conserved sequence fragments in fish genomes. Gene ontology (GO) enrichment analyses of protein coding genes, proximal to the region of conservation, in both organisms highlighted similar GO classes like regulation of transcription and central nervous system development. The proximal coding genes in both the species show enrichment of their expression in brain. In summary, we show that interesting genomic regions in zebrafish could be marked based on their sequence homology to a mouse lncRNA, overlap with ESTs and proximity to genes involved in nervous system development.Conclusions: Conservation at the sequence level can identify a subset of putative lncRNA orthologs. The similar protein-coding neighborhood and transcriptional information about the conserved candidates provide support to the hypothesis that they share functional homology. The pipeline herein presented represents a proof of principle showing that a portion between 4 and 11% of lncRNAs retains region of conservation between mammals and fishes. We believe this study will result useful as a reference to analyze the conservation of lncRNAs in newly sequenced genomes and transcriptomes. \uc2\ua9 2013 Basu et al.; licensee BioMed Central Ltd

    Transcriptome changes in age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a debilitating, common cause of visual impairment. While the last decade has seen great progress in understanding the pathophysiology of AMD, the molecular changes that occur in eyes with AMD are still poorly understood. In the current issue of Genome Medicine, Newman and colleagues present the first systematic transcriptional profile analysis of AMD-affected tissues, providing a comprehensive set of expression data for different regions (macula versus periphery), tissues (retina versus retinal pigment epithelium (RPE)/choroid), and disease state (control versus early or advanced AMD). Their findings will serve as a foundation for additional systems-level research into the pathogenesis of this blinding disease
    corecore